Ion Implantation for Semiconductor Devices: the Largest Use of Industrial Accelerators
نویسندگان
چکیده
Ion acceleration of dopants and other ions is a critical and nearly universally employed tool for the fabrication of transistors in semiconductor devices and the various forms of electronic, photovoltaic and photonic materials. This paper reviews the major types of accelerators, ion sources, and scanning methods used in contemporary practice for ion implantation for electronic applications.
منابع مشابه
Tantalum/ Nitrogen and n-type WO3 semiconductor/FTO structures as a cathode for the future of nano devices
In the last decades an important number of research papers published on nano chip electrode and cathode electrochromic materials. Tantalum (Ta) with so high melting point can be as a good candidate for the future of nano chip devices. However, its surface has not enough trap centers and/or occupation states, so nitrogen ions exposed on Ta surafce, may solve this problem. For this purpose, in th...
متن کاملInfluence of Ni Deposition and Subsequent N+ Ion Implantation at Different Implantation Energies on Nano-Structure and Corrosion Behavior of 316 Stainless Steels
Nickel films of 300 nm thickness were deposited by electron beam evaporation at room temperature on 316 stainless steels. Corrosion studies of Ni coated 316 SS have been performed after N+ ion implantation at different energies of 20, 40, 60 and 80 keV. The structure and surface morphology of the films were evaluated using X-ray diffraction (XRD), atomic force microscope (AFM) an...
متن کاملInfluence of nitrogen ion implantation on the nanostructure and corrosivity of Ni/stainless steel substrates
Ion implantation is a surface modification technology to produce new material on the surface by impingement of high energy ions from the ion accelerator. In this work, AISI 304 stainless steels were coated with 90 nm Ni film by electron beam deposition and implanted by a flow of 5×1017 N cm−2 at 400 K temperature with different implantation energies of 10, 20, 30 and 40 keV. The prepared sample...
متن کاملSurface erosion and modification by energetic ions
Surface erosion and modification by energetic highly charged and cluster ions are important in the development of semiconductor devices, TeV accelerators, fission and fusion reactors, and in the development of extreme ultra-violet lithography devices. Gas cluster ion beam (GCIB) surface treatment can significantly mitigate the high-gradient electric vacuum breakdown of rf-cavities. GCIB can als...
متن کاملRelease of arsenic from semiconductor wafers.
The production of integrated circuits and other semiconductor devices requires the introduction of impurities or dopants into the crystal lattice of a silicon substrate. This "doping" or junction formation is achieved through one of two processes: thermal diffusion or ion implantation. Ion implantation, the more contemporary and more accurate of the two processes, accomplishes junction formatio...
متن کامل